HW11 - Second Law & Free Energy

Started: Nov 1 at 9:02am

Quiz Instructions

Homework 11 - Second Law & Free Energy

Question 1	1 pts
n order for an endothermic reaction to be spontaneous,	
endothermic reactions are never spontaneous.	
O the entropy increase in the system must be greater than the entropy decrease in the surroundings.	
order for an endothermic reaction to be spontaneous, endothermic reactions are never spontaneous. the entropy increase in the system must be greater than the entropy decrease in the surroundings. heat must be supplied to the system.	
O nothing special is required; they are always spontaneous.	
O the entropy increase in the system must equal the entropy decrease in the surroundings.	

Question 3

Consider the following processes. Which entropy will increase as the process proceeds from left to right? Select all of the correct answers.

 \Box CaCO₃ (s) \rightarrow CaO (s) + CO₂ (g)

 \Box NaCl (s) \rightarrow Na⁺ (aq) + Cl⁻ (aq)

 \Box H₂O (I) \rightarrow H₂O (s)

Question 4	1 pts
What are the values of ΔS for the water, the surroundings, and the universe for the evaporation of water from an open at 25°C?	pan
O negative, negative	
O positive, negative, positive	
O positive, negative, zero	
O positive, negative	

Question 6

1 pts

Which of the following lists phases in order of increasing entropy?

🔵 solid, gas, liquid		
🔵 liquid, gas, solid		
🔘 solid, liquid, gas		
🔘 liquid, solid, gas		
🔵 gas, liquid, solid		

Question 7	1 pts
H_2 burning in O_2 to form H_2O (I) is an example of a system where the entropy of the universe decreases.	
\bigcirc H ₂ is not flammable.	
O True	
◯ False	

Question 8	1 pts
Consider the following processes of ideal gases. Which of these processes leads to an increase in entropy? Sele the correct answers.	ect all of
Nitrogen gas is compressed isothermally to one half its original volume.	
Carbon dioxide is allowed to expand isothermally to 10 times its original volume.	
The pressure of one mole of oxygen gas is allowed to double isothermally.	
A glass of water loses 100 J of energy reversibly at 30°C.	

Question 9	1 pts
Which of the following chemical reactions exhibit a positive ΔS ? Select all of the correct answers.	

 \bigcirc

$H_2O~(g) \rightarrow H_2O~(I)$		
$\Box 3O_2(g) \rightarrow 2O_3(g)$		
□ $2H_2O(I) + O_2(g) \rightarrow H_2O_2(I)$		
□ $2H_2O(g) \rightarrow 2H_2(g) + O_2(g)$		

Question 10	1 pts
The temperature of 2.00 mol Ne(g) is increased from 25°C to 200°C at constant pressure. Assuming the heat capac Ne is 20.8 J/K·mol, calculate the change in the entropy of neon. Assume ideal gas behavior.	city of
○ +7.68 J/K	
○ -19.2 J/K	
○ -7.68 J/K	
○ +19.2 J/K	

Question 11	1 pts
The enthalpy of fusion of H_2O (s) at its normal melting point is 6.01 kJ/mol. What is the entropy change for freezing 1 of water at this temperature?	mole
○ +22.0 J/mol·K	
○ -20.2 J/mol·K	
○ +20.2 J/mol·K	
○ -22.0 J/mol·K	

Question 12	1 pts
Coloulate the standard reaction entropy for the decomposition of 1 mal colo	ite to perform disvide and only colid colorum

Calculate the standard reaction entropy for the decomposition of 1 mol calcite to carbon dioxide gas and solid calcium oxide at 25°C.

$aCO_3 (s) \rightarrow$	$(O_2(g) + Ca)$
Substance	S° (J/mol·K)
CaO (s)	39.75
CO ₂ (g)	213.74
CaCO ₃ (s)	92.9
 346.4 J/ -160.6 J/ 160.6 J/ 	J/mol*K
O -266.9 J	J/mol*K

Question 13	1 pts
Ture/False: All entropies of fusion are negative.	
True - fusion leads to more microstates (degrees of freedom).	
False - fusion leads to more microstates (degrees of freedom).	
False - fusion leads to less microstates (degrees of freedom).	
True - fusion leads to less microstates (degrees of freedom).	

Question 14	1 pts
A system releases 900 J of heat to the surroundings (27°C). What is ΔS of the surroundings?	
🔘 33.3 J/K	
○ 3 J/K	
🔾 -3 J/K	

Question 15	1 pts
When a sugar cube dissolves in a cup of coffee (an endothermic process), entropy changes of the sugar plus wate surroundings, and the universe respectively are	er, the
O positive, negative	
O negative, positive	
O None of these are correct.	
O positive, positive	
negative, negative	

Question 16	1 pts
Which substance has the lower molar entropy?	
There is no way to know.	
O Ne (g) at 298 K and 1.00 atm	
They are both the same.	
O Kr (g) at 298 K and 1.00 atm	

Question 17	1 pts
Calculate the standard entropy of vaporization of ethanol at its boiling point, 352 K. The standard molar enthalpy of vaporization of ethanol at its boiling point is 40.5 kJ/mol.	
○ +40.5 J/mol·K	
○ +115 J/mol·K	
○ -40.5 J/mol·K	
◯ -115 J/mol·K	

Question 18	1 pts
Consider the following vaporization reaction.	
$Br_2(I) \rightarrow Br_2(g)$	
At a certain pressure, ΔH° = 34 kJ/mol and ΔS° = 0.098 kJ/mol·K. What is the lowest temperature at which th is spontaneous?	is process
🔾 347 К	
🔘 -347 К	
🔘 74 K	
O 0.00288 K	

Question 19	1 pts
For this problem, you will have to look up ΔH_f° and the S° values from a table. Estimate the minimum temperature a magnetite can be reduced to iron by graphite.	t which
Fe_3O_4 (s) + 2C (s, graphite) \rightarrow 2CO ₂ (g) + 3Fe (s)	
Magnetite will be reduced by carbon at any temperature.	
○ 670°C	
○ 535°C	
○ 787°C	
Magenetite cannot be reduced by carbon at any temperature.	

Question 20	1 pts
What is the entropy change for the following chemical reaction at at 25°C?	
$C_2H_2(g) + 2H_2(g) \rightarrow C_2H_6(g)$	

Substance	S° (J/K·mol)	$\Delta H_{\rm f}^{\circ}$ (kJ/mol)	
C ₂ H ₂ (g)	200.94	226.73	
H ₂ (g)	130.68	0	
C ₂ H ₆ (g)	229.6	-84.68	
🔵 290.0 J			
🔵 159.3 J	/mol·K		

Question 21	1 pts
What is the enthalpy change for the chemical reaction in question 20?	
O -311.41 kJ/mol	
O 311.41 kJ/mol	
◯ -538.14 kJ/mol	
◯ -142.05 kJ/mol	

Question 22	1 pts
Find the standard reaction free energy for the chemical reaction in question 20.	
O -242.03 kJ/mol	
O 69,068 kJ/mol	
O 69.07 kJ/mol	
○ -305.59 kJ/mol	

	1 pts
Assuming ΔH°_{rxn} and ΔS°_{rxn} are unaffected by temperature changes, find the temperature at which ΔG° is chemical reaction in question 20.	zero for the
🔘 -1338 К	
🔘 1338 К	
🔘 1.338 K	
\bigcirc 1.338 K \bigcirc ΔG° will not equal 0 at any possible temperature.	

Question 24 1 pts Consider the following unbalanced equation. What is the standard free energy for the reaction of 7.2 moles of $AI_2O_3(s)$ at 298K? $\mathsf{Al}_2\mathsf{O}_3\left(s\right) + \mathsf{CO}\left(g\right) \longrightarrow \mathsf{Al}\left(s\right) + \mathsf{CO}_2\left(g\right)$ Substance ΔH°_f (kJ/mol) S° (J/mol·K) -1676.0 AI_2O_3 (s) 50.92 CO (g) -110.5 197.6 Al (s) 0.0 28.3 $CO_2(g)$ -393.5 213.6 🔘 -15,000 kJ 🔵 810 kJ 🔵 5800 kJ ◯ -1.1 x 10⁵ kJ

Question 25	1 pts
Calculate the normal boiling point of chloroform given that the standard entropy and enthalpy of vaporization of is 93.7 J/mol·K and 31.4 kJ/mol, respectively.	chloroform
🔾 405 К	

🔵 450 K	
---------	--

🔵 335 K

🔵 375 K

Question 26	Juestion 26				
ind the standar	rd entropy ch	ange for the for	mation reaction of CO (g) at 298 K.		
Substance	S° (J/mol·K)	ΔH° _f (kJ/mol)			
C (s, graphite)	5.74	0			
O ₂ (g)	205.14	0			
CO (g)	197.67	-110.53			
 -89.36 J/m 13.21 J/mc 					
🔵 89.36 J/mc	oŀK				
🔵 -13.21 J/m	ol·K				

Question 27	1 pts
What is the standard free energy change for the chemical reaction in question 26?	
O 137.16 kJ/mol	
O 26,739.81 kJ/mol	
○ -26,739.81 kJ/mol	
O -137.16 kJ/mol	

Question 28	1 pts

Rocket fuel would be useless if its oxidation is not spontaneous. A chemist exploring potential fuels for use in space considered using vaporized aluminum chloride. What is the coefficient of O_2 (g) in the following balanced chemical equation that contains only whole numbered coefficients (i.e. no fractions)?

 $\mathsf{AICI}_3\left(g\right) + \mathsf{O}_2\left(g\right) \longrightarrow \mathsf{AI}_2\mathsf{O}_3\left(s\right) + \mathsf{CIO}\left(g\right)$

04			
0 6			
0 9			
01			

Question	29		1 pts
The below ta </th <th>able contains th</th> <th>ermodynamic data for the chemical reaction in qu</th> <th>estion 28 at 2000 K. What is ΔG_{rxn} at 2000</th>	able contains th	ermodynamic data for the chemical reaction in qu	estion 28 at 2000 K. What is ΔG_{rxn} at 2000
Substance	ΔG _f (kJ/mol)		
AICI ₃ (g)	-467		
Al ₂ O ₃ (s)	-1034		
CIO (g)	75		
	J/mol rxn /mol rxn		
🔵 -492 kJ	/mol rxn		
🔵 +700 k.	J/mol rxn		

Question 30	1 pts
Consider the reaction in questions 28 and 29. Would this choice of reactants make a good rocket fuel?	
It depends on the enthalpy change of the system.	
It depends on the entropy change of the system.	
0	

γ	΄ Δ	9
	C	9

🔘 No

Question	31	Question 31			
onsider the	e following che	mical reaction. Ca	ulate ΔG° for the rea	ction at 298 K.	
:O (g) + Cl ₂	$(g) \rightarrow COCl_2 (g)$	g)			
Substance	ΔH° _f (kJ/mol)	S° (J/mol·K)			
CO (g)	-110.5	197.6			
Cl ₂ (g)	0	223.0			
COCl ₂ (g)	-223.0	289.2			
-500.0	k l/m ol				
J -300.01	K0/11101				
0 -151.6	kJ/mol				
🔵 -39.3 k	J/mol				
🔵 -73.3 k	J/mol				

Question 32

1 pts

Consider the following table that contains an assortment of compounds and their corresponding standard free energies of formation. Which of these liquids are thermodynamically stable? Select all of the correct answers.

Name	Compound	Free Energy (kJ/mol)
Cyclohexane	C ₆ H ₁₂ (I)	6.4
Methanol	CH ₃ OH (I)	-166
Hydrazine	N ₂ H ₄ (I)	149
Hydrogen Peroxide	H ₂ O ₂ (I)	-120
Carbon Disulfide	CS ₂ (I)	65.3

Carbon Disulfide	
Methanol	
Hydrogen Peroxide	
Cyclohexane	
U Hydrazine	

Question 33	1 pts
Ammonia (NH ₃) gives windex and cat urine its odor. It has a ΔH° _{vap} of 23.35 kJ/mol and a ΔS° _{vap} of 97.43 J/mol·K. is the normal boiling point of ammonia?	. What
○ -0.2°C	
○ 273°C	
○ -33.3°C	
○ 238.7°C	

Not saved	Submit Quiz